Structure et Stéréochimie d'Alcaloïdes Indoliques. II.* Structure Cristalline et Moléculaire de l'Epi-19 N_a-Méthyl-vindolininol

PAR ANGÈLE CHIARONI, NICOLE LANGLOIS ET CLAUDE RICHE

Institut de Chimie des Substances Naturelles du CNRS, 91190 Gif sur Yvette, France

(Reçu le 31 mars 1977, accepté le 19 avril 1977)

Epimerization of N_a -methylvindolininol occurs in the presence of trifluoroacetic acid. The crystal and molecular structure of the title compound, $C_{21}H_{25}N_2O$, has been determined by X-ray diffraction analysis. The crystals are orthorhombic, space group $P2_12_12_1$, with Z = 4 and cell dimensions: a = 7.596, b = 12.920, c = 18.090 Å. The structure has been solved by direct methods and refined by full-matrix least-squares methods to a final R value of 0.043. The molecular structure of 19-epi- N_a -methylvindolininol is compared with that of vindolinine.

Introduction

La vindolinine (I) (Ahond *et al.*, 1974; Riche & Pascard-Billy, 1976), par N_a -méthylation (HCHO/CH₃CO₂H/NaBH₃CN), suivie de réduction par LiAlH₄ conduit au N_a -méthyl-vindolininol (III). En présence d'acide trifluoroacétique, ce dérivé évolue (schéma *a*) vers un mélange (50–50) de (III) et d'un composé très voisin (IV), dont la principale caractéristique spectrale est en RMN un très faible déplacement chimique des protons du méthyle C(18) [$\delta = 0,40$ p.p.m. contre 1,03 dans (III)]. Cette faible valeur de δ a été interprétée comme la conséquence de l'anisotropie du système dihydroindolique et rapportée à une épimérisation au niveau du carbone C(19) (Rasoanaivo, Langlois & Potier, 1974).

* Partie I: Riche & Pascard-Billy (1976).

Le composé IV est d'ailleurs accessible par action du mélange HCHO/CH₃CO₂H/NaBH₃CN, puis de LiAlH₄, sur un alcaloïde auquel la structure épi-19 vindolinine a été attribuée (Mehri, Koch, Plat & Potier, 1972) avant la révision de la structure de la vindolinine.

Cet alcaloïde a été isolé pour la première fois de Melodinus balansae (Mehri, Koch, Plat & Potier, 1972; Damak, Ahond & Potier, non publié), puis extrait de Catharanthus ovalis Mgf (Diatta, Langlois, Langlois & Potier, 1975). Le composé IV, soumis à l'acide trifluoroacétique, évolue comme (III), vers le même mélange (50-50) de (III) et (IV). Cette évolution est à rapprocher d'une transformation déjà observée par chauffage dans l'acide chlorhydrique 3N de la tuboxénine (V), alcaloïde étroitement apparenté à la vindolinine (I) (Gordman, Dastoor, Hesse, von Philipsborn, Renner & Schmid, 1969; Rasoanaivo & Lukacs, 1976). Cependant, les hypothèses envisagées pour expliquer l'épimérisation en C(19) ne rendent pas compte de l'influence constatée, du groupement fonctionnel R_2 en C(16), et aucun intermédiaire n'a pu jusqu'à présent être mis en évidence.

Pour exclure définitivement l'éventualité d'un réarrangement du squelette (par exemple, par transposition du type Wagner-Meerwein, schéma b) la structure cristalline du composé IV a été déterminée, confirmant ainsi la structure épi-19 N_a -méthyl-vindolininol et en même temps celle de l'alcaloïde II.

La détermination de cette structure fait partie d'une étude structurale d'alcaloïdes indoliques. Dans le cadre de ce travail, ont déjà été publiées les structures cristallines de l'ervatamine (Riche, 1974), la desméthoxycarbonyl-16 épi-20 ervatamine (Riche & Pascard-Billy, 1977), la catharine (Guilhem, Ducruix, Riche & Pascard, 1976), la cathovalinine (Chiaroni, Riche, Diatta, Andriamialisoa, Langlois & Potier, 1976) et enfin la vindolinine (Riche & Pascard-Billy, 1976), partie I du présent travail.

Tableau 1. Données cristallographiques

Formule brute $C_{21}H_{25}N_2O$ a - 7,596 (1) Å Masse moléculaire 322 b = 12,920 (3) Système cristallin orthorhombique c = 18,090 (4) Groupe spatial $P2_12_12_1$ $d_x = 1,205$ g cm⁻³ Z = 4 $d_m = 1,18$

Partie expérimentale

Les cristaux, recristallisés dans un mélange méthanoléther se présentent sous la forme de parallélépipèdes incolores. Les paramètres de la maille ainsi que leurs écarts-type ont été déterminés à partir de données diffractométriques, en minimisant par la méthode des moindres carrés, les écarts entre les valeurs observées et calculées de 23 réflexions d'axes. Les principales caractéristiques cristallographiques sont contenues dans le Tableau 1.

L'enregistrement des données a été réalisé sur un diffractomètre Philips PW 1100, équipé d'un monochromateur au graphite, en utilisant la radiation Cu $K\alpha$ $(\lambda = 1,5418 \text{ Å})$ et la méthode de balayage θ -2 θ . Sur un total de 1858 réflexions mesurées, 1631 répondant au critère $I > 3\sigma(I)$, $\sigma(I)$ étant l'erreur statistique de comptage (Stout & Jensen, 1968), ont été considérées comme observées.

Résolution et affinement de la structure

La structure a été résolue par la méthode de la multisolution (Germain, Main & Woolfson, 1971) à l'aide du

Tableau 2. Paramètres atomiques $(\times 10^4)$ des atomes non-hydrogène avec écarts-type entre parenthèses

	x	у	Z
N(1)	-1681 (3)	3163 (2)	4296 (1)
C(2)	-1935 (4)	3000 (2)	3504 (2)
C(3)	-383 (5)	3261 (3)	1072 (2)
N(4)	451 (3)	3346 (2)	1818 (1)
C(5)	1294 (4)	2399 (2)	2108 (2)
C(6)	1402 (4)	2593 (2)	2937 (2)
C(7)	-126(3)	3349 (2)	3145 (2)
C(8)	495 (4)	4115 (2)	3719 (2)
C(9)	1816 (4)	4837 (2)	3681 (2)
$\tilde{C}(10)$	2194 (5)	5432 (3)	4310 (2)
$\hat{\mathbf{C}}(1)$	1278 (5)	5268 (3)	4947 (2)
$\hat{C}(12)$	-52 (5)	4537 (3)	5000 (2)
C(13)	-442 (4)	3954 (2)	4378 (2)
C(14)	-2233 (6)	3653 (3)	1028 (2)
C(15)	-3312 (5)	3733 (3)	1589 (2)
C(16)	-2619 (4)	1945 (2)	3238 (2)
C(17)	-2892 (4)	2178 (2)	2412 (2)
C(18)	-3359 (5)	4870 (3)	3260 (3)
C(19)	-3308 (4)	3718 (2)	3090 (2)
C(20)	-2669 (4)	3374 (2)	2324 (2)
C(21)	-743 (4)	3730 (2)	2379 (2)
C(22)	-1639(5)	964 (2)	3416 (2)
O(23)	-2723 (3)	110 (2)	3232 (1)
C(24)	-3162 (7)	3083 (4)	4786 (3)

Tableau 3. Coordonnées $(\times 10^3)$ des atomes d'hydrogène

 $\sigma(x) = 0,004$, $\sigma(y) = \sigma(z) = 0,003$. d: distance en Å de l'atome d'hydrogène considéré à l'atome porteur: $\langle d \rangle = 0,97$ (6) Å.

	x	У	Ζ	d
H(3a)	-38	258	94	0,92
H(3b)	34	368	66	1,08
H(5a)	250	229	185	1,04
H(5b)	65	168	199	1,07
H(6a)	153	192	325	1,04
H(6b)	254	297	308	1,02
H(9)	259	496	321	1,05
H(10)	312	591	428	0,94
H(11)	156	564	535	0,90
H(12)	-79	445	545	0,99
H(14)	-249	389	52	0,99
H(15)	-442	395	154	0,89
H(16)	-382	187	350	1,03
H(17a)	-413	202	225	1,01
H(17b)	-203	187	208	0,97
H(18a)	-288	525	296	0,82
H(18b)	-451	516	330	0,96
H(18c)	-304	493	372	0,87
H(19)	-440	348	316	0,90
H(21)	-69	450	236	1,00
H(22a)	-56	91	312	0,98
H(22b)	-122	96	395	1,01
H(23)	-206	-45	324	0,89
H(24a)	-269	294	528	0,98
H(24 <i>b</i>)	-407	262	463	0,96
H(24c)	-368	366	496	0,90

 Tableau 4. Distances (Å) entre atomes non-hydrogène avec écarts-type entre parenthèses

N(1)–C(2)	1,460 (4)	C(8)–C(13)	1,404 (4)
N(1) - C(13)	1,397 (4)	C(9)-C(10)	1,403 (5)
N(1) - C(24)	1,436 (6)	C(10) - C(11)	1,364 (5)
C(2) - C(7)	1,585 (4)	C(11)–C(12)	1,386 (5)
C(2) - C(16)	1,536 (4)	C(12)–C(13)	1,386 (5)
C(2) - C(19)	1,584 (4)	C(14)–C(15)	1,308 (6)
C(3) - N(4)	1,494 (4)	C(15)–C(20)	1,491 (5)
C(3) - C(14)	1,496 (6)	C(16)-C(17)	1,538 (5)
N(4) - C(5)	1,477 (4)	C(16)-C(22)	1,505 (4)
N(4) - C(21)	1,449 (4)	C(17)–C(20)	1,563 (4)
C(5) - C(6)	1,521 (5)	C(18)C(19)	1,520 (5)
C(6) - C(7)	1,563 (4)	C(19)–C(20)	1,534 (5)
C(7) - C(8)	1,510 (4)	C(20)–C(21)	1,537 (4)
C(7)–C(21)	1,542 (4)	C(22)-O(23)	1,417 (4)
C(8) - C(9)	1,372 (4)		

programme MULTAN. La première synthèse de Fourier calculée avec les facteurs de structure normalisés a révélé le squelette complet de la molécule. Les coordonnées atomiques et les facteurs de température ont été affinés par la méthode des moindres carrés en minimisant l'expression: $\sum w(F_o - F_c)^2$ où $w = 1/\sigma^2(F_o), \sigma(F_o)$ étant calculé à partir de $\sigma(I)$.

En fin d'affinement anisotropique, tous les atomes d'hydrogène ont été localisés sur deux séries de Fourierdifférence successives. Leurs coordonnées ont été affinées au cours des trois derniers cycles d'affinement,

Tableau 5. Angles de valence (°) avec écarts-type entre parenthèses

C(2)–N(1)–C(13)	107,4 (2)	C(9) - C(10) - C(11)	119,7 (3)
C(2)-N(1)-C(24)	119,5 (3)	C(10)-C(11)-C(12)	122,4 (4)
C(13)-N(1)-C(24)	121,0 (3)	C(11)-C(12)-C(13)	118,1 (3)
N(1)-C(2)-C(7)	104,3 (2)	N(1)-C(13)-C(8)	111.1 (3)
N(1)-C(2)-C(16)	118,6 (2)	N(1)-C(13)-C(12)	128.9 (3)
N(1)-C(2)-C(19)	117,8 (2)	C(8) - C(13) - C(12)	120.0(3)
C(7)-C(2)-C(16)	114,6 (2)	C(3) - C(14) - C(15)	125.0 (4)
C(7)-C(2)-C(19)	102,1(2)	C(14) - C(15) - C(20)	117.5 (4)
C(16)-C(2)-C(19)	98,6 (2)	C(2)-C(16)-C(17)	100.2(2)
N(4)-C(3)-C(14)	114,9 (3)	C(2) - C(16) - C(22)	120.9 (3)
C(3) - N(4) - C(5)	116,4 (3)	C(17) - C(16) - C(22)	116.0 (3)
C(3)-N(4)-C(21)	113,1(3)	C(16)-C(17)-C(20)	106.1 (3)
C(5)-N(4)-C(21)	107,8 (2)	C(2) - C(19) - C(18)	119.7(3)
N(4)-C(5)-C(6)	103,7 (3)	C(2) - C(19) - C(20)	92.8 (2)
C(5)-C(6)-C(7)	107,5 (2)	C(18) - C(19) - C(20)	118.3 (3)
C(2)-C(7)-C(6)	124,4 (2)	C(15)-C(20)-C(17)	111.3(3)
C(2) - C(7) - C(8)	100.1(2)	C(15) - C(20) - C(19)	1277(3)
C(2) - C(7) - C(21)	101,3 (2)	C(15)-C(20)-C(21)	106.1(3)
C(6)-C(7)-C(8)	110.1(2)	C(17) - C(20) - C(19)	99.3(2)
C(6) - C(7) - C(21)	102,1(2)	C(17)-C(20)-C(21)	113.1(3)
C(8)-C(7)-C(21)	120,2 (2)	C(19) - C(20) - C(21)	989(2)
C(7)-C(8)-C(9)	129,8 (3)	N(4) - C(21) - C(7)	109.3(2)
C(7) - C(8) - C(13)	109.2 (2)	N(4) - C(21) - C(20)	1166(2)
C(9) - C(8) - C(13)	120,9 (3)	C(7) - C(21) - C(20)	104.6(2)
C(8) - C(9) - C(10)	118,8 (3)	C(16) - C(22) - O(23)	108.5 (3)
		$=()^{-}(-0$	

tandis que leurs facteurs de température isotropes, équivalents à celui de l'atome porteur étaient maintenus constants. La valeur finale du facteur R conventionnel est 0,043 (R pondéré = 0,049).

Les facteurs de diffusion atomique utilisés sont ceux de Doyle & Turner (1968) pour les atomes C, N, O et ceux de Stewart, Davidson & Simpson (1965) pour les atomes H.

Les coordonnées atomiques des différents atomes sont reportées dans les Tableaux 2* et 3, ainsi que les distances des atomes d'hydrogène aux atomes porteurs. Les distances interatomiques et les angles de valence entre atomes lourds figurent dans les Tableaux 4 et 5.

Discussion

La Fig. 1 donne la stéréochimie et la numérotation des atomes, la Fig. 2 une vue en perspective de la molécule. Rappelons que la configuration absolue de ces alcaloïdes est connue (Rasoanaivo, Langlois & Potier, 1974).

La géométrie très particulière de cette molécule est tout à fait comparable à celle de la vindolinine (Riche & Pascard-Billy, 1976). L'un des points remarquables est l'arrangement en forme 'cage' des cycles F, C et D.

Fig. 1. Schéma de la molécule donnant la numérotation des atomes.

Fig. 2. Vue en perspective de la molécule.

Comme dans la vindolinine, on constate des contacts intramoléculaires très courts entre les atomes en vis à vis, notamment entre les atomes d'hydrogène (Tableau 6). Leur répulsion entraîne l'allongement important de certaines liaisons et l'ouverture accusée de certains angles de valence, que l'on compare en Tableau 7 aux

Tableau 6. Contacts courts intramoléculaires (Å)

Entre atomes non-hydrogène ($\sigma = 0,005$ Å)

$C(3) \cdots C(17)$	3,386 (5)	$C(5)\cdots C(16)$	3,655 (5)
$N(4) \cdots C(17)$	3,143 (4)	$C(5)\cdots C(22)$	3,742 (5)
$C(5) \cdots C(17)$	3,240 (5)	$C(6)\cdots C(22)$	3,240 (5)
C(3)C(17)	3,240 (3)	$C(6)\cdots C(22)$	3,240 (5)

Entre atomes d'hydrogène ($\sigma = 0.04$ Å)

$H(5)\cdots H(17b)$	2,06	$H(18a)\cdots H(21)$	2,21
$H(6a)\cdots H(22a)$	2,07	$H(18b)\cdots H(19)$	2,19
$H(16)\cdots H(17a)$	2,28	$H(18c)\cdots H(19)$	2,37
$H(16)\cdots H(19)$	2,20	$H(22a)\cdots H(23)$	2,11
$H(16)\cdots H(19)$	2,20	$H(22a) \cdots H(23)$	2,11
$H(16)\cdots H(24b)$	2,27	$H(22b) \cdots H(23)$	2,31

 Tableau 7. Comparaison de certains liaisons et angles de valence dans trois alcaloïdes

	(–)-Pseudo kopsinine	Vindolinine	Epi-19 vindolininol
C(2) - C(7)	1,575 (6) Å	1,576 (7) Å	1,585 (4) Å
C(2)-C(19)	1,564 (6)	1,580 (7)	1,584 (4)
C(6) - C(7)	1,556 (6)	1,563 (7)	1,563 (4)
C(17) - C(20)	1,544 (7)	1,563 (7)	1,563 (4)
C(2)-C(7)-C(6)	123,5 (2)°	123,1 (5)°	124,4 (2)°
C(2)-C(16)-C(22)	119,3 (2)	118,9 (5)	120,9 (3)
C(15)-C(20)-C(19)	101,0 (2)	121,7 (5)	127,7 (3)

^{*} Les listes des facteurs de structure et des facteurs d'agitation thermique ont été déposées au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 32679: 13 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 INZ, Angleterre.

valeurs observées dans la vindolinine et dans la (-)pseudokopsinine ou dihydro-14,15 vindolinine (Nasirov, Andrianov, Struchkov & Yunusov, 1976).

Il existe probablement une relation entre les valeurs particulières de ces distances et angles de valence et l'aptitude à se fragmenter de la vindolinine et de certains de ses dérivés. La liaison C(2)-C(7) dans ces composés se rompt en effet facilement en présence d'agent oxydant par exemple (Rasoanaivo, Langlois & Potier, 1974; Diatta, Andriamialisoa, Langlois & Potier, 1976) pour conduire à des composés pentacycliques du type tabersonine.

Les valeurs des angles de torsion sont reportées sur la Fig. 3 et les principaux plans moyens, précisant la conformation des cycles, dans le Tableau 8. Pour les cycles à cinq, on a calculé les paramètres Δ et φ_m : Δ est l'angle de pseudo-rotation dont les valeurs limites $\Delta =$ 0° et $|\Delta| = 36°$ caractérisent respectivement une forme demi-chaise et une forme enveloppe idéales, φ_m est

Tableau 8. Principaux plans moyens

Les équations sont rapportées à un système d'axes orthonormés parallèles aux axes cristallographiques.

Plan A:	0,6691X - 0,8869Y + 0,2838Z + 1,4869 = 0
Plan B':	0,6814X - 0,6613Y + 0,3077Z + 1,1810 - 0
Plan G' :	-0.3316X - 0.9237Y - 0.1921Z + 4.1640 = 0

Ecarts des atomes aux plans moyens (Å)

	Plan A	Plan B'		Plan G'
N(1)	0,031 (2)*	-0,004 (3)	C(3)	- 0,004 (4)
C(2)	-0,360 (3)*	0,438 (3)*	N(4)	• 0,574 (2)*
C(7)	0,065 (2)*	0,004 (3)	C(14)	0,010 (4)
C(8)	-0,004(3)	-0,008 (3)	C(15)	-0,009 (4)
C(9)	0,007 (3)		C(20)	0,002 (3)
C(10)	-0,006(3)		C(21)	-0,927 (3)*
C(11)	0,001 (4)			
C(12)	0,001 (4)			
C(13)	0,001 (3)	0,010 (3)		
C(24)	-0,399 (5)*	-0,433 (5)*		

* Atome non inclus dans le calcul du plan moyen.

Fig. 4. Projections de Newman selon les liaisons C(16)–C(22) et C(22)–O(23).

Fig. 5. Projection de la structure selon l'axe a montrant les liaisons hydrogène intermoléculaires.

Fig. 3. Angles de torsion (°).

l'angle de déformation maximum (Altona, Geise & Romers, 1968).

Les déviations des atomes N(1), C(2) et C(7) du plan benzénique A rendent compte de la forme enveloppe en C(2) du cycle B: C(2) a -0.438 Å du plan des quatre atomes C(7), C(8), C(13) et N(1), $\Delta = 33.5^{\circ}$ et $\varphi_m =$ 28,5°. La situation de l'atome C(24) à -0.433 Å de ce même plan met en évidence l'hybridation sp³ de l'atome d'azote N(1), configuration normale dans le cas d'un dihydroindole mais qui n'apparaissait pas dans la vindolinine. Les cycles C et D adoptent une conformation intermédiaire entre les formes demi-chaise et enveloppe en C(19): $\Delta = 15^{\circ}$, $\varphi_m = 61^{\circ}$ pour le cycle $C, \Delta = 17,5^{\circ}$ et $\varphi_m = 63^{\circ}$ pour le cycle D. Le cycle F tend vers la forme demi-chaise ($\Delta = 8^{\circ}, \varphi_m = 32^{\circ}$) alors qu'il se rapprochait davantage de la forme enveloppe dans la vindolinine. La conformation du cycle E est intermédiaire entre les formes bateau et croisée du cyclohexane, le cycle G adopte la forme 1,3diplanaire du cyclohexène (Bucourt & Hainaut, 1965). Les projections de Newman selon les liaisons C(16)-C(22) et C(22)-O(23), Fig. 4, précisent l'orientation du groupement OH en C(22).

La Fig. 5 représente une projection suivant **a** de la structure cristalline. Des liaisons hydrogène du type OH…N relient entre elles deux molécules d'alcaloïde formant des chaînes sensiblement parallèles à **b**. Les caractéristiques géométriques de cette liaison sont: $O(23) \dots N(4) = 2,861 (4)$ Å, $H(23) \dots N(4) = 1,977 (4)$ Å et $\angle O(23) - H(23) \dots N(4) = 170^{\circ}$.

Références

AHOND, A., JANOT, M.-M., LANGLOIS, N., LUKACS, G., POTIER, P., RASOANAIVO, P., SANGARE, M., NEUSS, N., PLAT, M., LE MEN, J., HAGAMAN, E. W. & WENKERT, E. (1974). J. Amer. Chem. Soc. 96, 633–634.

- ALTONA, C., GEISE, H. J. & ROMERS, C. (1968). Tetrahedron, 24, 13-32.
- BUCOURT, R., HAINAUT, D. (1965). Bull. Soc. Chim. Fr. pp. 1366–1378.
- CHIARONI, A., RICHE, C., DIATTA, L., ANDRIAMIALISOA, R. Z., LANGLOIS, N. & POTIER, P. (1976). *Tetrahedron*, **32**, 1899–1902.
- DIATTA, L., ANDRIAMIALISOA, R. Z., LANGLOIS, N. & POTIER, P. (1976). *Tetrahedron*, **32**, 2839–2842.
- DIATTA, L., LANGLOIS, Y., LANGLOIS, N. & POTIER, P. (1975). Bull. Soc. Chim. Fr. pp. 671–674.
- DOYLE, P. A. & TURNER, P. S. (1968). Acta Cryst. A24, 390-397.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). Acta Cryst. A27, 368-376.
- GORDMAN, A. A., DASTOOR, N. J., HESSE, M., VON PHILIPSBORN, H., RENNER, U. & SCHMID, H. (1969). Helv. Chim. Acta, 52, 33-55.
- GUILHEM, J., DUCRUIX, A., RICHE, C. & PASCARD, C. (1976). Acta Cryst. B32, 936–938.
- MEHRI, H., KOCH, M., PLAT, M. & POTIER, P. (1972). Ann. Pharm. Fr. 30, 643-650.
- NASIROV, S. M., ANDRIANOV, V. G., STRUCHKOV, YU. T. & YUNUSOV, S. YU. (1976). *Khim. Prir. Soedin.* 2, 197–206.
- RASOANAIVO, P., LANGLOIS, N. & POTIER, P. (1974). Tetrahedron Lett. pp. 3669–3672.
- RASOANAIVO, P. & LUKACS, G. (1976). J. Org. Chem. 41, 376-378.
- RICHE, C. (1974). Acta Cryst. B30, 610-616.
- RICHE, C. & PASCARD-BILLY, C. (1976). Acta Cryst. B32, 1975-1980.
- RICHE, C. & PASCARD-BILLY, C. (1977). Acta Cryst. B33, 133-135.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.
- STOUT, M. & JENSEN, L. M. (1968). X-ray Structure Determination, pp. 456–458. London: Collier-Macmillan.